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Abstract—We establish a linear system of one dimensional beam equations, through use of the principle of
minimum potential energy in conjunction with suitable displacement approximations, which takes account
of warping stiffness in addition to stretching, transverse shearing, bending and twisting stiffness. We use
this system of equations for the asymptotic analysis of a warping boundary layer, including the concept of
contracted and reduced boundary conditions for the determination of the state of the beam outside the
layer, as well as for the derivation of expressions for cross sectional shear center coordinates which are
more general than previous expressions for these quantities.

INTRODUCTION
In what follows we supplement two recent considerations of the theory of unsymmetrical cross
section beams, with particular emphasis on the extent to which the concept of warping stiffness,
in addition to the concepts of stretching, shearing, bending and twisting stiffness, is an essential
part of this theory(l, 3].

In [1] one of our main concerns was the problem of determining shear and twist center
locations through use of the principle of minimum potential energy in conjunction with suitable
approximations for components of displacement. In [3] one of our main concerns was the
asymptotic solution of the problem of cantilever torsion and flexure for a restricted class of
beams, allowing the use of the theory of shear deformable plates, through the utilization of the
concept of edge zone and interior solution portions of a differential bending moment function
which is part of the theory of this class of unsymmetrical cross section beams.

The present consideration of the potential energy procedure for the general cross section
beam is at the same time simpler and less restrictive than the work in [1]. The restrictive
assumption which is now not made is the assumption of negligible translational deflections due
to transverse shear deformability. Aside from the simplification which results from this we
deduce, in particular, conclusions not previously stated regarding the nature of the problem of
appropriately choosing a description of the state of cross sectional warping.

Given the general seventh order system of one-dimensional beam equations accounting for
the effects of stretching, shearing, bending, twisting and warping, we proceed, in extension of
the work in [3], to the derivation of a one-dimensional compatibility equation, so as to allow a
sequential determination of statical and kinematical quantities in the seventh order theory, in
analogy to what is automatically possible in the classical sixth order theory without account for
the effect of warping stiffness. It is thought that the idea of this compatibility equation and the
use of it for the recognition of distinct edge zone and interior solution contributions, with the
ensuing possibility of a derivation of contracted kinematical boundary conditions for an
asymptotic sequential determination of interior and edge zone states, are what is most
interesting in the present analysis.

. DERIV.ATIOI.‘I OF ONE-DIMENSIONAL BEAM EQUATIONS
We begin as in [1] by stipulating as approximations for components of displacement

a=u(z2)-y0(z), o=rv(z)+x86(2), (1a,b)
w=w(2)+xa(z2)+yB(z)+g(x, y)A(z2). Q)
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In this x and y are coordinates in the cross section, the direction of z coincides with the axis of
the beam, and g is to be assumed suitably.

We determine the seven functions of z in (1) and (2) through use of the principle of
minimum potential energy, with the energy functional here taken in the form

I=%I(E€§+ Gi§,+'Gi§,)dV-I(fw+pu+qv+ma+nB+t0+r,\)dz. (?)

In this f, p, g, m, n, t and r are one-dimensional components of load intensity due to body
forces and/or surface tractions and

E=W,=w +xa' +yB +g\' CY)
Yee=U,+W,=u'+a—y8' +g,A, 5)
Vye=0,+W, =0 +B+x0+g,A 6)

We introduce (4)~(6) into the variational equation 81 = 0 and write this equation in the form
I[Fﬁw’ + M&a' + NOB' + R6A' + Po(u' + a) + Q8(v' + B) + T86' + S6A 1 dz
- f (féw + mda + ndB + réA + pdu + qdv + t86)dz =0, M

with F, P, Q being cross sectional forces, M, N, T cross sectional moments and R, §
supplementary cross sectional stress measures.
Equation (7) implies the seven one-dimensional Euler equilibrium differential equations
F'+f=0, M-p+m=0, N -Q+n=0, (8a—c)
P+p=0, Q+q=0, T'+t=0, R-S+r=0, (9a-d)

with eqns (4)-(6) implying the system of one-dimensional constitutive equations

F D., Dy, D, Du|[w [ j Cu Cu Cus Can U+ a

M|_|D. . . Dalla|.|0Q|-]Ca Co || 2FB ) o)
N . . . B' {\T COu . COO CUA 6’
R D,\w . . DAA A’ S CAu . . CAA A
where the D and C in (10) are of the form
Do=[ Eddd, Cu=[Geuda,etc an
and where the d and c in (11) are as shown below
d w a B k [ u v [} ’\
- I x y a u 1 0 -y 8. x
a x xz xy xg M 0 ! zx 2 g-‘l (12)
2 [} -y x x ty xg -vYg
8 Y yx vy Y8 Z'Y 2 ' X
\ ¢ ex gy g2 A Ex By xs'y-vs x z.x’rs ¥
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CHOICE OF THE FUNCTION g

Given that the system of beam equations (8)-(10) includes as (trivial) special cases the
appropriate equations for pure stretching and bending of prismatical beams under the influence
of end forces and end moments, as exact consequences of the three-dimensional theory of
elasticity, it suggests itself to choose the function g in such a way that the same is true insofar
as the St. Venant theory of torsion due to applied end torques is concerned. For this to be the
case the function g must be the warping function ¢ of St. Venant torsion. Assuming, in
extension of the classical theory, a shear modulus G = G(x, y) we have then as conditions
determining the function g = ¢, the differential equation

(G- ) +[G(g, + )], =0, (3)

in conjunction with the boundary condition of vanishing wall tractions
(6:-y)dy—(¢,+x)dx=0. (14)

Equations (13) and (14) imply, in generalization of well known results for the case
G = const, the validity of the three conditions

I G(é, - y)dA =0, ] G(é,+x)dA =0, (15a,b)
and
[ 608, -x8,04= [ o2+ 8y da (16)

It is convenient for what follows to determine the arbitrary constant which remains in ¢ by
stipulating that

j E¢dA =0, 0%))
and to introduce the defining relations
(Ap S16 50 o Jo) = [ (1, x, 767+ ¥, 61+ 1) G dA, (18)
(A, Sie. Sy Lo Lo Ke) = [ (1%, 3,52, 2 ) E dA, (19)
(T Ty Toe) = [ (5,3, 6) $E a4 20)

The matrices D and C in (10) and (11) therewith assume the formt

Ae Sz S O Ac 0 -S; S
Se Le Ke e 0 A S¢ =S

D= Se Ke Le Ty C=| -S¢ S Is -Je |’ @0
0 er F’E FdE SyG - ng - ]G JG

tWe note in this connection that it should read Ty = I #*EdSinplaceof T = I $E dS in equation (26b} in [1], with T, in
place of T in eqns (27), (29)-(31) and (34).
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AN ALTERNATE CHOICEOF g
Considering the relative complexity of the problem of determining g = ¢ in accordance with
(13) and (14) the following alternate choice of g is “‘reasonable”. We take account of the fact
that (13) and (14) are Euler differential equations and Euler boundary conditions of the
variational equation

6 I (G(g.-y)'+G(g,+x)]dA=0. 22

We use (22) in order to determine an approximation to ¢, in the form

g=cot Cx+Cyy +%c3x’+%c,y2+c5xy. (23)

We find by introducing (23) into (22) as a system of five equations for the determination of the
coefficients ¢, to cs,

€1Ag* €356 + €58, = Si6 (24a)

€18+ ¢3¢+ ¢sKg = Kg, (24b)

CAG + €Sy + €586 = — Si6, (24¢)
286+ ¢l +csKg = ~ K, (24d)

€1Sy6 + €286 H(c3+ c)Kg + cslg = g~ Lg. (24e)

Having then the values of ¢, to ¢ in terms of cross sectional weighted averages of G we
may determine the elements of the two coefficient matrices in (10) and (11) in terms of these
weighted averages in accordance with the defining relations in (11) and (12), in conjunction with
the additional stipulation

] EgdA =0, (17)

for the purpose of determining the sixth coeflicient ¢;.

As regards this determination for the general unsymmetric cross section case we only note
here the fact that we retain in the approximate analysis the coefficient property C,, = — Cs
which was encountered in the result for g = ¢ as stated in (21). To see that this is so it is only
necessary to set 8g, = g, and 8g, = g, in the relation

[ 166~ 138+ Gig, + 108,144 =0, )

which occurs in the evaluation of (22). Having this result we have ensured as well that
equations (18) to (21) retain their validity, with ¢ in (18)-(20) replaced by g as in (23).

EQUATIONS FOR BEAMS WITH ONE CROSS SECTIONAL AXIS OF SYMMETRY
For cases for which there is geometrical and material symmetry about one of the two
cartesian cross sectional axes, say the axis of y, we will have g(x, y) = —g(—x, y) and in (21)

sxG = 0' SxE = 0’ KE = 01 FYE = 0: (25)

and eqns (8)-(10) decouple into one elementary system for F, Q, N, w, v, B, and one system
which is of interest within the present context, with equilibrium equations

M~P+m=0, P+p=0, T'+t=0, RR~S+r=0. (26)

As far as the constitutive equations for the system (26) are concerned we have, when g = ¢,
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on the basis of (21)

[M] = [IxE F:t-:] [a'} P Ag -5 Sc| [W+a n
R Tie TeedlA ) [Tl -Se I - o |
s SyG - Ia Ia A
The choice of g corresponding to (23) is for the case of symmetry about the y-axist
g = 01X+ CsXY, (28)

with the equations determining ¢, and c; being, in accordance with (24)

C!Ag + CSSyG = SyG- Clsyq + CjIG = I,G = IGs (29)
and therewith
__2Sgle . _Aglg-lLg)- S
9] AGIG - S]G’ Cs AGIG - SyG . (30)

Inasmuch as f Gg. dA = S, not only when g = ¢ but, in view of the form of (28) and (29),
also when g is given by (28), and in view of the fact that for both choices of g we have that
C., = - Cy, we may, with C,, in accordance with (11) and (12), use (27) also for the case that g is as
in (28) and (29) upon writing

Jo = csllyg - Ig) + 18,6 (&1))

and upon writing
Te=cs [ Ex’ydA+c g, (32a)
Tye=cs [ Ex’y*dA+2ccs ] Ex’ydA+c’Le (32b)

We note that for the case of a doubly symmetric cross section we have S, =0, [ Ex’ydA =
0 and ¢, =0, and therewith

— L) -Ig\
e = RN R (L A (33)

It is apparent, in view of the assumed form of g, that for a beam with uniform elliptical cross
section the value of J; in (33) will coincide with the value of J; in (18).

SEQUENTIAL DETERMINATION OF STATICAL ANDKINEMATICAL QUANTITIES
For cases for which the external load terms in the equilibrium equations (8) and (9) are given
functions of z it is useful to have constitutive equations for displacements and displacement
derivatives in terms of statical quantities by inversion of (10) and (11), in the form

W' Dit Di¢ Div Deh 1 [F

a Dyr Dyu Dun Dir | |M
B || Dy . . . N 34
A DRy . . Dzk ] LR
U+a Cat . . CillP
"+ Cop . . Cg
D e P A 7 %)
A ct .. ci1lLS

1This choice of g corresponds effectively to what has been done ip the analysis of plate-iike beams in [3].
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With (34) and (35) we may complement the seven equilibrium equations for eight statical
quantities by an eighth equation containing statical quantities only, by using the expressions
for A" and A in (34) and (35) for the purpose of deducing a compatibility relation
DkF + DM + DRy N + DRkR=(C5hP + C5Q + C5k T + C55SY, (36)

with this relation becoming a differential equation for R upon eliminating S through the use of
(9d), of the form

(CssRY ~ DzeR = D3pF + Dy M + DiyN —(CpP + C55Q+ Csr T+ Csir)y. (37
Having then F, P, Q, T, M, N and R from (8a-c), (9a—) and (37) we may obtain w, a, 8, 6,

u, v by direct integration of the relevant equations in (34) and (35), with § = R’ + r on the right
hand side of (35) and with A given by the last equation in (35) without integration.

ASYMPTOTIC DETERMINATION OF INTERIOR SOLUTION
By interior solution of the given problem we here mean a solution which coincides with the

actual solution outside of {narrow) edge zones associated with the enforcement of warping
constraint boundary conditions. Mathematically, the possibility of a distinction between edge
zone and interior domain is given, on the basis of equation (37), upon stipulating an order of
magnitude relation

Dig < CssL?, (38
in which L is a representative axial length, which may be the span of the beam, or the distance

over which significant changes of loads are occurring.
For cases for which (38) applies it is of advantage to write the solution (37) in the form

R=R,+R, 39
with R, being the general solution of the homogeneous equation
(C34R.)' - DzkR. =0, (40)
and with R; approximated by the expression
DR = (CspP + C5pQ + CsrT + Csr) — DrpF ~ DM ~ D N. 41

Having equations (40) and (41) we may then obtain expressions for w, « and 2 from (34), in
the form

(v, @, B)= (v, @, 8)+ [ (D5, Die, DROR. 42 @)

with the meaning of w, a; B; being evident from (34), (39) and (41). Alongside {42) we have,
from (35) in conjunction with (9-d) and (39)

A=A +CsR, (43)
where it remains to utilize (42) and (43) together with the order of magnitude relation
R, =0(LR.), 44)

for the purpose of deducing from a set of four boundary conditions for w, &, B, A a contracted
set of three conditions for the determination of w;, a; B, A



The problem of torsion and flexure of prismatical beams 9

To obtain this set of contracted boundary conditions we transform the integral involving R,
in (42) with the help of the differential equation (40) as follows

[ DR 4z = [ D' Daa(CHRY d2 = D D CitReY - [ @ Durcairyes @)
It may be concluded from (45) and (44) that
[ DR, dz~ D' DexC3iR., (46)

except for quantities which are small of higher order. This being the case we may furth.er
conclude from (42) and (43), by eliminating the remaining dominant terms with R,’ that, in
generalization of a special form of this result in [3], the four boundary conditions

w=w, a=a B=B A=A (@7

are in fact equivalent to three contracted conditions for the interior solution contribution, of the
form

(DreWs, Dy, DngBi) — DrrAi = (Der, Durd, DgB) — Dieh. 48)

Proceeding in an analogous way in regard to the conditions u = &, v = 5, 6 = § we find that
here the order of magnitude relation (44) implies that the conditions for u, v, 8 are asymptotic-
ally equivalent to the reduced conditions

u=a, v,=0v 6=20 (49)
for the interior solution contribution.

ASYMPTOTIC DETERMINATION OF SHEARCENTER LOCATION
By asymptotic determination we mean here a determination of the coordinates of the center
of shear based on the interior portion of the solution of the problems of torsion and flexure in
the sense of the discussion in [3].
We begin with the relation

¢'=CrpP+CroQ+ CrT+C3sS, (35
and in this write S$=R’. We then take R'=R/’+R,’= R/ with r=0, from (41) where we

restrict ourselves for present purposes to the case of axially homogeneous beams, so as to have
from (34), with (8b, ¢),

S = —(Dgg/ Dra)P — (Dge! Drn) Q. (50)
and then from (35"
1 D, | D, T
g=(L __Dre 1 D I
(Crp CTSDRM) P+ (Cro CTSDRN) Q+ Crr’ G

Equation (51) simplifies considerably upon consideration of the fact that with the C-matrix
as in (21) we have from (11)

T+8=(;-J;)0, (52)
and therewith in accordance with (35),

S U O N 5
CTP CTQ ’ Crr CTS IG _‘,G’ ( )
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and then from (51)

, 1 ( Dgg Dgrg )
9 =—=—(T -8R p_ZRR 1y} 54
Crr\T " Dew ¥ "D © 4

Having (54) we define shear center coordinates x,, y, consistent with the procedure in (1]
and [4] by the stipulation

0 =0, T= Qx:_Py.h (55)
and this, in conjunction with (54), results in the formulas

Dgg Dgg
s T s = TR . 56
%= Den’ ¥~ " Diu (8)

A determination of Dgy, Dgy and Dgg in accordance with equations (34) and (10), with the
four by four matrix in (10) as in (21), then gives as expressions for x, and y,,

X, = A—|[ - ryE(IxE - AElSiE) + er(KE - AEleESyE)]v

(57)
ys = AT e(le — AE'S2e) — T,e(Ke — AE' SeeS,e)l.
with the denominator A being of the form
A= (IXE - AExSiE)(IyE - AEISiE) - (KE - AEISxESyE)z' (58)

For the case S.z= S, =0 these formulas reduce to the corresponding formulas in [1}].
Remarkably, the values of x, and y, in (57) show no explicit dependence on variations of G
over the cross section. There is, however, an implicit dependence, inasmuch as the integrands
in the defining relations for I',g and I',r depend on the distribution of G, in accordance with the
form of the differential equation ¢13) for ¢, or in accordance with the defining relations (23), (24)
and (17') for the approximating function g.
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